Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Clin Oncol ; 40(33): 3808-3816, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: covidwho-2117954

RESUMEN

PURPOSE: To examine COVID-19 mRNA vaccine-induced binding and neutralizing antibody responses in patients with non-small-cell lung cancer (NSCLC) to SARS-CoV-2 614D (wild type [WT]) strain and variants of concern after the primary 2-dose and booster vaccination. METHODS: Eighty-two patients with NSCLC and 53 healthy volunteers who received SARS-CoV-2 mRNA vaccines were included in the study. Blood was collected longitudinally, and SARS-CoV-2-specific binding and neutralizing antibody responses were evaluated by Meso Scale Discovery assay and live virus Focus Reduction Neutralization Assay, respectively. RESULTS: A majority of patients with NSCLC generated binding and neutralizing antibody titers comparable with the healthy vaccinees after mRNA vaccination, but a subset of patients with NSCLC (25%) made poor responses, resulting in overall lower (six- to seven-fold) titers compared with the healthy cohort (P = < .0001). Although patients age > 70 years had lower immunoglobulin G titers (P = < .01), patients receiving programmed death-1 monotherapy, chemotherapy, or a combination of both did not have a significant impact on the antibody response. Neutralizing antibody titers to the B.1.617.2 (Delta), B.1.351 (Beta), and in particular, B.1.1.529 (Omicron) variants were significantly lower (P = < .0001) compared with the 614D (WT) strain. Booster vaccination led to a significant increase (P = .0001) in the binding and neutralizing antibody titers to the WT and Omicron variant. However, 2-4 months after the booster, we observed a five- to seven-fold decrease in neutralizing titers to WT and Omicron viruses. CONCLUSION: A subset of patients with NSCLC responded poorly to the SARS-CoV-2 mRNA vaccination and had low neutralizing antibodies to the B.1.1.529 Omicron variant. Booster vaccination increased binding and neutralizing antibody titers to Omicron, but antibody titers declined after 3 months. These data highlight the concern for patients with cancer given the rapid spread of SARS-CoV-2 Omicron variant.


Asunto(s)
COVID-19 , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Anciano , Vacunas contra la COVID-19 , Formación de Anticuerpos , SARS-CoV-2 , Carcinoma de Pulmón de Células no Pequeñas/terapia , Neoplasias Pulmonares/terapia , COVID-19/prevención & control , Anticuerpos Antivirales , Inmunización , Vacunación , Anticuerpos Neutralizantes , ARN Mensajero
2.
Front Immunol ; 13: 985478, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2080150

RESUMEN

Currently, vaccines for SARS-CoV-2 and influenza viruses are updated if the new vaccine induces higher antibody-titers to circulating variants than current vaccines. This approach does not account for complex dynamics of how prior immunity skews recall responses to the updated vaccine. We: (i) use computational models to mechanistically dissect how prior immunity influences recall responses; (ii) explore how this affects the rules for evaluating and deploying updated vaccines; and (iii) apply this to SARS-CoV-2. Our analysis of existing data suggests that there is a strong benefit to updating the current SARS-CoV-2 vaccines to match the currently circulating variants. We propose a general two-dose strategy for determining if vaccines need updating as well as for vaccinating high-risk individuals. Finally, we directly validate our model by reanalysis of earlier human H5N1 influenza vaccine studies.


Asunto(s)
COVID-19 , Subtipo H5N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19 , Gripe Humana/prevención & control , COVID-19/prevención & control
3.
J Clin Oncol ; 40(26): 3020-3031, 2022 09 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1879289

RESUMEN

PURPOSE: Patients with non-Hodgkin lymphoma including chronic lymphocytic leukemia (NHL/CLL) are at higher risk of severe SARS-CoV-2 infection. We investigated vaccine-induced antibody responses in patients with NHL/CLL against the original SARS-CoV-2 strain and variants of concern including B.1.167.2 (Delta) and B.1.1.529 (Omicron). MATERIALS AND METHODS: Blood from 121 patients with NHL/CLL receiving two doses of vaccine were collected longitudinally. Antibody binding against the full-length spike protein, the receptor-binding, and N-terminal domains of the original strain and of variants was measured using a multiplex assay. Live-virus neutralization against Delta, Omicron, and the early WA1/2020 strains was measured using a focus reduction neutralization test. B cells were measured by flow cytometry. Correlation between vaccine response and clinical factors was determined. RESULTS: Mean anti-SARS-CoV-2 spike immunoglobulin G-binding titers were 85-fold lower in patients with NHL/CLL compared with healthy controls, with seroconversion occurring in only 67% of patients. Neutralization titers were also lower and correlated with binding titers (P < .0001). Treatment with anti-CD20-directed therapies within 1 year resulted in 136-fold lower binding titers. Peripheral blood B-cell count also correlated with vaccine response. At 3 months from last anti-CD20-directed therapy, B-cell count ≥ 4.31/µL blood around the time of vaccination predicted response (OR 7.46, P = .04). Antibody responses also correlated with age. Importantly, neutralization titers against Delta and Omicron were reduced six- and 42-fold, respectively, with 67% of patients seropositive for WA1/2020 exhibiting seronegativity for Omicron. CONCLUSION: Antibody binding and live-virus neutralization against SARS-CoV-2 and its variants of concern including Delta and Omicron were substantially lower in patients with NHL/CLL compared with healthy vaccinees. Anti-CD20-directed therapy < 1 year before vaccination and number of circulating B cells strongly predict vaccine response.


Asunto(s)
COVID-19 , Leucemia Linfocítica Crónica de Células B , Linfoma no Hodgkin , Vacunas , COVID-19/prevención & control , Humanos , Leucemia Linfocítica Crónica de Células B/terapia , Linfoma no Hodgkin/terapia , SARS-CoV-2 , Vacunas Sintéticas , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Vacunas de ARNm
4.
Evolution, medicine, and public health ; 10(1):202-213, 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-1822990

RESUMEN

Background and objectives Theory suggests that some types of vaccines against infectious pathogens may lead to the evolution of variants that cause increased harm, particularly when they infect unvaccinated individuals. This theory was supported by the observation that the use of an imperfect vaccine to control Marek’s disease virus in chickens resulted in the virus evolving to be more lethal to unvaccinated birds. This raises the concern that the use of some other vaccines may lead to similar pernicious outcomes. We examine that theory with a focus on considering the regimes in which such outcomes are expected. Methodology We evaluate the plausibility of assumptions in the original theory. The previous theory rested heavily on a particular form of transmission–mortality–recovery trade-off and invoked other assumptions about the pathways of evolution. We review alternatives to mortality in limiting transmission and consider evolutionary pathways that were omitted in the original theory. Results The regime where the pernicious evolutionary outcome occurs is narrowed by our analysis but remains possible in various scenarios. We propose a more nuanced consideration of alternative models for the within-host dynamics of infections and for factors that limit virulence. Our analysis suggests imperfect vaccines against many pathogens will not lead to the evolution of pathogens with increased virulence in unvaccinated individuals. Conclusions and implications Evolution of greater pathogen mortality driven by vaccination remains difficult to predict, but the scope for such outcomes appears limited. Incorporation of mechanistic details into the framework, especially regarding immunity, may be requisite for prediction accuracy. Lay Summary A virus of chickens appears to have evolved high mortality in response to a vaccine that merely prevented disease symptoms. Theory has predicted this type of evolution in response to a variety of vaccines and other interventions such as drug treatment. Under what circumstances is this pernicious result likely to occur? Analysis of the theory in light of recent changes in our understanding of viral biology raises doubts that medicine-driven, pernicious evolution is likely to be common. But we are far from a mechanistic understanding of the interaction between pathogen and host that can predict when vaccines and other medical interventions will lead to the unwanted evolution of more virulent pathogens. So, while the regime where a pernicious result obtains may be limited, caution remains warranted in designing many types of interventions.

5.
J Virol ; 96(9): e0002622, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1784768

RESUMEN

Humoral immunity is a major component of the adaptive immune response against viruses and other pathogens with pathogen-specific antibody acting as the first line of defense against infection. Virus-specific antibody levels are maintained by continual secretion of antibody by plasma cells residing in the bone marrow. This raises the important question of how the virus-specific plasma cell population is stably maintained and whether memory B cells are required to replenish plasma cells, balancing their loss arising from their intrinsic death rate. In this study, we examined the longevity of virus-specific antibody responses in the serum of mice following acute viral infection with three different viruses: lymphocytic choriomeningitis virus (LCMV), influenza virus, and vesicular stomatitis virus (VSV). To investigate the contribution of memory B cells to the maintenance of virus-specific antibody levels, we employed human CD20 transgenic mice, which allow for the efficient depletion of B cells with rituximab, a human CD20-specific monoclonal antibody. Mice that had resolved an acute infection with LCMV, influenza virus, or VSV were treated with rituximab starting at 2 months after infection, and the treatment was continued for up to a year postinfection. This treatment regimen with rituximab resulted in efficient depletion of B cells (>95%), with virus-specific memory B cells being undetectable. There was an early transient drop in the antibody levels after rituximab treatment followed by a plateauing of the curve with virus-specific antibody levels remaining relatively stable (half-life of 372 days) for up to a year after infection in the absence of memory B cells. The number of virus-specific plasma cells in the bone marrow were consistent with the changes seen in serum antibody levels. Overall, our data show that virus-specific plasma cells in the bone marrow are intrinsically long-lived and can maintain serum antibody titers for extended periods of time without requiring significant replenishment from memory B cells. These results provide insight into plasma cell longevity and have implications for B cell depletion regimens in cancer and autoimmune patients in the context of vaccination in general and especially for COVID-19 vaccines. IMPORTANCE Following vaccination or primary virus infection, virus-specific antibodies provide the first line of defense against reinfection. Plasma cells residing in the bone marrow constitutively secrete antibodies, are long-lived, and can thus maintain serum antibody levels over extended periods of time in the absence of antigen. Our data, in the murine model system, show that virus-specific plasma cells are intrinsically long-lived but that some reseeding by memory B cells might occur. Our findings demonstrate that, due to the longevity of plasma cells, virus-specific antibody levels remain relatively stable in the absence of memory B cells and have implications for vaccination.


Asunto(s)
Anticuerpos Antivirales , Coriomeningitis Linfocítica , Células B de Memoria , Rituximab , Animales , Anticuerpos Antivirales/sangre , Humanos , Inmunidad Humoral , Memoria Inmunológica , Coriomeningitis Linfocítica/inmunología , Células B de Memoria/citología , Ratones , Ratones Transgénicos , Infecciones por Orthomyxoviridae/inmunología , Células Plasmáticas/citología , Infecciones por Rhabdoviridae/inmunología , Rituximab/farmacología
6.
Science ; 375(6585): 1116-1121, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1735998

RESUMEN

We have come a long way since the start of the COVID-19 pandemic-from hoarding toilet paper and wiping down groceries to sending our children back to school and vaccinating billions. Over this period, the global community of epidemiologists and evolutionary biologists has also come a long way in understanding the complex and changing dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19. In this Review, we retrace our steps through the questions that this community faced as the pandemic unfolded. We focus on the key roles that mathematical modeling and quantitative analyses of empirical data have played in allowing us to address these questions and ultimately to better understand and control the pandemic.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19/epidemiología , Control de Enfermedades Transmisibles , Pandemias , SARS-CoV-2 , Número Básico de Reproducción , COVID-19/prevención & control , COVID-19/transmisión , COVID-19/virología , Modelos Epidemiológicos , Humanos , Modelos Teóricos , Cuarentena , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad
7.
Immunity ; 54(10): 2172-2176, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1433404

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated disease, coronavirus disease 2019 (COVID-19), has caused a devastating pandemic worldwide. Here, we explain basic concepts underlying the transition from an epidemic to an endemic state, where a pathogen is stably maintained in a population. We discuss how the number of infections and the severity of disease change in the transition from the epidemic to the endemic phase and consider the implications of this transition in the context of COVID-19.


Asunto(s)
COVID-19/epidemiología , COVID-19/inmunología , Enfermedades Endémicas , COVID-19/prevención & control , Susceptibilidad a Enfermedades/epidemiología , Susceptibilidad a Enfermedades/inmunología , Epidemias , Humanos , Inmunidad , Prevalencia , SARS-CoV-2/inmunología , Índice de Severidad de la Enfermedad , Vacunación
8.
Cell Rep Med ; 2(7): 100354, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: covidwho-1294297

RESUMEN

Ending the COVID-19 pandemic will require long-lived immunity to SARS-CoV-2. Here, we evaluate 254 COVID-19 patients longitudinally up to 8 months and find durable broad-based immune responses. SARS-CoV-2 spike binding and neutralizing antibodies exhibit a bi-phasic decay with an extended half-life of >200 days suggesting the generation of longer-lived plasma cells. SARS-CoV-2 infection also boosts antibody titers to SARS-CoV-1 and common betacoronaviruses. In addition, spike-specific IgG+ memory B cells persist, which bodes well for a rapid antibody response upon virus re-exposure or vaccination. Virus-specific CD4+ and CD8+ T cells are polyfunctional and maintained with an estimated half-life of 200 days. Interestingly, CD4+ T cell responses equally target several SARS-CoV-2 proteins, whereas the CD8+ T cell responses preferentially target the nucleoprotein, highlighting the potential importance of including the nucleoprotein in future vaccines. Taken together, these results suggest that broad and effective immunity may persist long-term in recovered COVID-19 patients.


Asunto(s)
Anticuerpos Antivirales/sangre , Formación de Anticuerpos , COVID-19/inmunología , Memoria Inmunológica , Glicoproteína de la Espiga del Coronavirus/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Estudios Longitudinales , Masculino , Células B de Memoria , Células T de Memoria , Persona de Mediana Edad , Adulto Joven
10.
Science ; 371(6530): 741-745, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1029163

RESUMEN

We are currently faced with the question of how the severity of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may change in the years ahead. Our analysis of immunological and epidemiological data on endemic human coronaviruses (HCoVs) shows that infection-blocking immunity wanes rapidly but that disease-reducing immunity is long-lived. Our model, incorporating these components of immunity, recapitulates both the current severity of SARS-CoV-2 infection and the benign nature of HCoVs, suggesting that once the endemic phase is reached and primary exposure is in childhood, SARS-CoV-2 may be no more virulent than the common cold. We predict a different outcome for an emergent coronavirus that causes severe disease in children. These results reinforce the importance of behavioral containment during pandemic vaccine rollout, while prompting us to evaluate scenarios for continuing vaccination in the endemic phase.


Asunto(s)
COVID-19/epidemiología , COVID-19/inmunología , Infecciones por Coronavirus/epidemiología , Enfermedades Endémicas , Inmunidad Adaptativa , Adolescente , Adulto , Distribución por Edad , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/prevención & control , COVID-19/transmisión , Vacunas contra la COVID-19/inmunología , Niño , Preescolar , Enfermedades Transmisibles Emergentes/epidemiología , Coronavirus/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/mortalidad , Enfermedades Endémicas/prevención & control , Epidemias , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Lactante , Reinfección , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Estudios Seroepidemiológicos , Síndrome Respiratorio Agudo Grave/epidemiología , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA